Health News

In-home wireless device tracks disease progression in Parkinsons patients: By continuously monitoring a patients gait speed, the system can assess the conditions severity between visits to the doctors office.

Parkinson’s disease is the fastest-growing neurodegenerative disease, now affecting more than 10 million people worldwide, yet clinicians still face huge challenges in tracking its severity and progression.

Clinicians typically evaluate patients by testing their motor skills and cognitive functions during clinic visits. These semisubjective measurements are often skewed by outside factors — perhaps a patient is tired after a long drive to the hospital. More than 40 percent of individuals with Parkinson’s are never treated by a neurologist or Parkinson’s specialist, often because they live too far from an urban center or have difficulty traveling.

In an effort to address these problems, researchers from MIT and elsewhere demonstrated an in-home device that can monitor a patient’s movement and gait speed, which can be used to evaluate Parkinson’s severity, the progression of the disease, and the patient’s response to medication.

The device, which is about the size of a Wi-Fi router, gathers data passively using radio signals that reflect off the patient’s body as they move around their home. The patient does not need to wear a gadget or change their behavior. (A recent study, for example, showed that this type of device could be used to detect Parkinson’s from a person’s breathing patterns while sleeping.)

The researchers used these devices to conduct two studies that involved a total of 50 participants. They showed that, by using machine-learning algorithms to analyze the troves of data they gathered (more than 200,000 gait speed measurements), a clinician could track Parkinson’s progression more effectively than they would with periodic, in-clinic evaluations.

“By being able to have a device in the home that can monitor a patient and tell the doctor remotely about the progression of the disease, and the patient’s medication response so they can attend to the patient even if the patient can’t come to the clinic — now they have real, reliable information — that actually goes a long way toward improving equity and access,” says senior author Dina Katabi, the Thuan and Nicole Pham Professor in the Department of Electrical Engineering and Computer Science (EECS), and a principle investigator in the Computer Science and Artificial Intelligence Laboratory (CSAIL) and the MIT Jameel Clinic.

Source: Read Full Article